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1 Introduction

On the Cartesian plane, the natural numbers are uniquely assigned to all points of integer coordinates (the
lattice points) (x, y). The mapping goes: (0, 0) 7→ 1, (1, 0) 7→ 2, (1, 1) 7→ 3, (0, 1) 7→ 4, (−1, 1) 7→ 5,
(−1, 0) 7→ 6, (−1,−1) 7→ 7, (0,−1) 7→ 8, (1,−1) 7→ 9, (2,−1) 7→ 10, (2, 0) 7→ 11, (2, 1) 7→ 12, (2, 2) 7→ 13,
and continues infinitely outward, as described by Stanislaw Ulam (after whom the spiral is named), Myron
Stein, and Mark Wells in A Visual Display of Some Properties of the Distribution of Primes. In Figure 1,
connecting points that have been assigned consecutive numbers results in a counterclockwise square spiral—
the Ulam spiral.

Figure 1: Lattice points in the domain |x|, |y|≤3 are shown as circles containing the number assigned to
them.

In the most common image of the spiral, each lattice point is represented as a single pixel. “Prime points”
have been assigned prime numbers, and are coloured black. The curiosity of the spiral is the presence of
prominent “prime-rich lines”, along which prime points occur with a greater-than-expected frequency. The
existence of prime-rich lines is surprising to some, because it shows a pattern that is not intuitively expected.
For this reason, the Ulam spiral is popularized as mysterious.

In the original paper, prime-rich lines are stated to be connected to the factorability of quadratic expres-
sions. Robert Sacks thoroughly explains this connection using a round (Archimedean) variant of the spiral.
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Figure 2: Points |x|, |y| ≤ 64 in the Ulam spiral, coloured as described. Lines x = 0, y = 0, and y = ±x are
also shown.

Nonetheless, understanding of the Ulam spiral is incomplete. It receives little attention, the majority of
which is from amateur mathematicians. This essay presents an in-depth study of an incomplete explanation
first mentioned by Tom Bates. It focuses on geometric patterns that appear when points assigned values
divisible by a particular number are highlighted. The explanation is implemented in a model to predict the
locations of prime points in the spiral. The success of this model leads reflects the success of the explanation,
leading to the question: How can a model based on the cause of prime-rich lines in the Ulam spiral be used
to produce prime numbers?
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2 Modelling the spiral

2.1 Wheel factorization

For a factor p, the probability that a randomly chosen number X is indivisible by p is p−1
p . X is prime

(X ∈ P) if it is indivisible by every prime number between 2 and
√
X (inclusive). Suppose X has a value

close to x. Then, probabilistic arguments can be made:

P (X ∈ P|X ≈ x) ≈ P ((p1 - X) ∩ (p2 - X) ∩ . . . ∩ (pk - X))

Where pn is the nth prime, and k is the number of primes less than
√
x. Each event p - X is independent:

∴ P (X ∈ P|X ≈ x) ≈ P (p1 - X)× P (p2 - X)× . . .× P (pk - X)

∴ P (X ∈ P|X ≈ x) ≈ p1 − 1

p1
× p2 − 1

p2
× . . .× pk − 1

pk
=

k∏
i=1

pi − 1

pi
≈ 1

ln(x)− 1.08366

Then, one is given that X is not a multiple of pn, where 1 ≤ n ≤ k.

P (X ∈ P|X ≈ x, pn - X) =
P (X ∈ P|X ≈ x) ∩ (pn - X))

P (pn - X)
=
P (X ∈ P|X ≈ x)

pn−1
pn

P (X ∈ P|X ≈ x, pn - X) =
pn

pn − 1
P (X ∈ P|X ≈ x)

Such given information is desirable, as it increases the probability of finding a prime number when X is
chosen. Let Q represent the factor by which P (X ∈ P|X ≈ x) increases. Then, the probability that X is
prime is approximately Q

ln(x)−1.08366 . In the above case, Q = pn

pn−1 . Ideally, Q should be as large as possible.

Wheels use multiple conditions to result in large values of Q:

1. 2 - X ⇐⇒ X 6≡ 0 (mod 2).

2. 3 - X ⇐⇒ X 6≡ 0 (mod 3).

3. The Chinese remainder theorem states that the conditions can be combined to find X modulo 2×3 = 6.
Assume X can be congruent to anything modulo 6: X ≡ 0, 1, 2, 3, 4, 5 (mod 6).

4. X 6≡ 0 (mod 2), ∴ X ≡ 1, 3, 5 (mod 6).

5. X 6≡ 0 (mod 3), ∴ X ≡ 1, 5 (mod 6).

X ≡ 1, 5 (mod 6) is an example of a wheel. Selecting X to equal 1 + 6k or 5 + 6k introduces some
information about X, such that Q = 2

2−1
3

3−1 = 3. Adding more statements like 5 - p can increase Q further.
Similarly on the Ulam spiral, a more complicated process may locate lines that contain no points that have
been assigned multiples of the first n primes—the prime-rich lines.

2.2 Goals of a model

The primary goal of the model presented in this essay is to predict the locations of prime-rich lines in the
Ulam spiral. This is evaluated based on how prime-rich these lines are, compared to a random selection of
“average” lines. The greater the difference, the more effectively the model may be used to produce primes.
The exploration is also driven by the goal to be as complete as possible in describing the mechanics of
the spiral. Many amateur studies are incomplete due to a limited focus, such as on lines of a particular
slope. This essay attempts to avoid specific cases as much as possible. Finally, computational complexity
is an important theme in the development of algorithms used to find prime numbers. In this exploration,
symmetries are studied as a means to minimize computation.

Along with the model, most images of the spiral that appear in this essay are generated with the assistance
of original Java code, which may be found in the appendix.
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3 Spiral anatomy

3.1 The spiral as a recursive function

f is a function accepting a lattice point ((x, y) ∈ Z×Z) as its parameter, that outputs the number assigned
to that point on the Ulam spiral. The recursive definition of f is similar to the way in which a person might
construct the spiral.

f((x, y)) =



1, if (x, y) = (0, 0)

f((x, y − 1)) + 1, if − x+ 2 ≤ y ≤ x in quadrant 1

f((x+ 1, y)) + 1, if − y ≤ x ≤ y − 1 in quadrant 2

f((x, y + 1)) + 1, if x ≤ y ≤ −x− 1 in quadrant 3

f((x− 1, y)) + 1, if y + 1 ≤ x ≤ −y + 1 in quadrant 4

Four quadrants exist on the spiral. In each quadrant “the next point” is in a different direction relative
to the previous point. The variable d represents the quadrant number, an arbitrary value from 1 to 4. In
this essay, d = D is used to signify that only quadrant D is being considered.

d =


1, if − x+ 2 ≤ y ≤ x
2, if − y ≤ x ≤ y − 1

3, if x ≤ y ≤ −x− 1

4, if y + 1 ≤ x ≤ −y + 1

In all quadrants, some unit vector describes the displacement to a point from “the point before it”. Let
v̂ represent this vector:

v̂ = (vx, vy) =


(0, 1), if d = 1

(−1, 0), if d = 2

(0,−1), if d = 3

(1, 0), if d = 4

By definition, f can be rewritten as:

f((x, y)) =

{
1, if (x, y) = (0, 0)

f((x, y)− v̂) + 1, otherwise

The spiral winds around the origin by one “layer” per complete revolution. A separate vector û represents
the direction between successive layers of the spiral. For example, (6, 2) is one layer beyond (5, 2) in quadrant
1.

û = (ux, uy) =


(1, 0), if d = 1

(0, 1), if d = 2

(−1, 0), if d = 3

(0,−1), if d = 4

aû + bv̂ is a frequent representation of points in this essay. a is the number of layers between the point
and the origin, and b represents how far anticlockwise the point is in the rotation of the spiral. a and b must
be integers. When writing aû+ bv̂, the location of the point is ambiguous, since the unit vectors depend on
the undeclared quadrant number d. Writing d = D : aû + bv̂, there is no ambiguity, since the unit vectors
are defined. Every point has a unique representation in the form d = D : aû+ bv̂.

The generalized spiral The Ulam spiral can be generalized to begin with n at (0, 0) and increment by
m.

fm,n((x, y)) =

{
n, if (x, y) = (0, 0)

fm,n((x, y)− v̂) +m, otherwise
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Figure 3: The quadrants: 1) red, 2) yellow, 3) green, 4) blue. Black arrows represent û, white arrows represent
v̂. The point assigned 14 is located at d = 2 : 2û+ (−1)v̂. In comparison, d = 3 : f(2û+ (−1)v̂) = 18.

The original Ulam spiral is described by f1,1. This complication is not solely for being general. The range
of f can be set to any arbitrary arithmetic sequence: fm,n(P ) ≡ n (mod m). Thus, wheel factorization may
be directly implemented into the Ulam spiral. For example, the wheel p ≡ 1, 5 (mod m) can be simulated
with f6,1 and f6,5.

3.2 The spiral as an explicit function

Performing recursion is computationally intensive; an explicit function is more desirable. Examining the
relationship between a and fm,n(aû)), quadratic relationships are found.

a d = 1 d = 2 d = 3 d = 4
1 1m+ n 3m+ n 5m+ n 7m+ n
2 10m+ n 14m+ n 18m+ n 22m+ n
3 27m+ n 33m+ n 39m+ n 45m+ n
4 52m+ n 60m+ n 68m+ n 76m+ n
5 85m+ n 95m+ n 105m+ n 115m+ n

General (4a2 − 3a)m+ n (4a2 − a)m+ n (4a2 + a)m+ n (4a2 + 3a)m+ n
formula (4a2 − 5a + 2(1)a)m + n (4a2 − 5a + 2(2)a)m + n (4a2 − 5a + 2(3)a)m + n (4a2 − 5a + 2(4)a)m + n

It is concluded from inspection that fm,n(aû) = (4a2− 5a+ 2da)m+n. This can be substituted into the
recursive formula for the generalized Ulam spiral.

fm,n(aû+ bv̂) =

{
(4a2 − 5a+ 2da)m+ n, if b = 0

fm,n(aû+ bv̂ − v̂) +m, otherwise

Thus, fm,n(aû+ 1v̂) = (4a2 − 5a+ 2da)m+m+ n, which then allows fm,n(aû+ 2v̂) to be defined, and
so on. By inductive reasoning, the explicit function of the generalized Ulam spiral is obtained:

fm,n(aû+ bv̂) = (4a2 − 5a+ 2da)m+ bm+ n = (4a2 − 5a+ 2da+ b)m+ n

4 Divisibility plots

The famous image of the Ulam spiral is a graph of fm,n(P ) ∈ P. This is not the only possible representation.
In this section, the graph of p | fm,n(P ) is explored in depth, called a “divisibility plot” modulo p. No
specific value of p is chosen, but it is understood that p is some odd prime number, treated as a constant.
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Figure 4: The plot of 2 | f1,1(P ) shows why the prominent prime-rich lines on the Ulam spiral are primarily
diagonal. Only a diagonal line may contain no multiples of 2.

f1,1(P ) ≡ 0 mod 3 f1,1(P ) ≡ 0 mod 5 f1,1(P ) ≡ 0 mod 7

Figure 5: Various divisibility plots.

4.1 Exceptions

The mathematics presented in the following sections assume p - m. Recall that fm,n(P ) ≡ n (mod m). If
p | m, then fm,n(P ) ≡ n (mod p). If p | n, then every point is divisible modulo p, otherwise p - n and no
point is divisible.

4.2 Parabolas

Divisibility plots are named so because every point where p | fm,n(P ) is true has been assigned a multiple
of p. These points are “divisible points”. If p - fm,n(P ), P is an “indivisible point”. Divisible points can be
located explicitly:

p | fm,n(aû+ bv̂) ⇐⇒ fm,n(aû+ bv̂) ≡ (4a2 − 5a+ 2da+ b)m+ n ≡ 0 (mod p)

(4a2 − 5a+ 2da+ b)m ≡ −n (mod p)

4a2 − 5a+ 2da+ b ≡ −m−1p n (mod p)

b ≡ −4a2 + 5a− 2da−m−1p n (mod p)

b = (−4 + k2p)a
2 + (5− 2d+ k1p)a+ (−m−1p n+ k0p), k0, k1, k2 ∈ Z

Thus, if aû+ bv̂ is a divisible point, then b is equal to a function gk0,k1,k2
of a:

b = gk0,k1,k2(a) = (−4 + k2p)a
2 + (5− 2d+ k1p)a+ (−m−1p n+ k0p)

The notation m−1p is used throughout this essay to signify the least positive modular multiplicative inverse
of m modulo p. It is the solution to m−1p m ≡ 1 (mod p) , 0 ≤ m−1p < p. m−1p does not exist if m and p share
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a common factor. As k0, k1, k2, and a vary, every possible solution for b in fm,n(aû + bv̂) ≡ 0 (mod p) is
obtained. That is, aû + gk0,k1,k2(a)v̂ describes every divisible point. Noting that gk0,k1,k2(a) is a quadratic
expression, tû + gk0,k1,k2

(t)v̂ , t ∈ Z is a parabola consisting solely of divisible points. Varying k0, k1, k2
affects the behaviour of the parabola.

f1,1 f3,7 f8,2

Figure 6: Various divisibility plots modulo 5. Example parabolas are highlighted in red.

4.3 Symmetries

Observations are made of three symmetries on the divisibility plot. They are transformations applied to a
point, which guarantee that the transformed point is divisible, if the original is. The point resulting from
the transformation is thus said to be “redundant” to the original. Redundancy is an equivalence relation on
a divisibility plot:

• Let A 
 B signify that B is divisible if A is. That is, B is redundant to A. In terms of points, this
means that a transformation following one of the three symmetries can move A to the location of B.

• Reflexivity: A
 A.

• Symmetry: A
 B ⇒ B 
 A.

• Transitivity: (A
 B ∧B 
 C)⇒ A
 C.

4.4 Translation symmetry

Tiling conjecture P = aû+bv̂ and P ′ = P +∆aû+∆bv̂ are two points within the same quadrant. When
∆a and ∆b are multiples of p, P ′ must be a divisible point if P is; P 
 P ′. Formally:

P 
 P + kapû+ kbpv̂ , ka, kb ∈ Z

Proof Assume that P = aû+ bv̂ is a divisible point. That is,

fm,n(P ) = fm,n(aû+ bv̂) = (4a2 − 5a+ 2da+ b)m+ n ≡ 0 mod p

P ′ is a divisible point if fm,n(P ′) ≡ 0 mod p.

P ′ = P + ∆aû+ ∆bv̂ = (a+ ∆a)û+ (b+ ∆b)v̂

When ∆a and ∆b are multiples of p, they can be written as kap and kbp respectively (ka, kb ∈ Z).

P ′ = (a+ kap)û+ (b+ kbp)v̂

fm,n(P ′) = fm,n((a+ kap)û+ (b+ kbp)v̂)

fm,n(P ′) = (4(a+ kap)
2 − 5(a+ kap) + 2d(a+ kap) + (b+ kbp))m+ n

7



Figure 7: The boundary between quadrants 1 and 2 in the divisibility plot modulo 13. In each quadrant, a
pattern of divisible points repeats in both dimensions as tessellating 13×13 square “tiles”. This observation
leads to the tiling conjecture.

fm,n(P ′) = (4a2 − 5a+ 2da+ b)m+ (8aka + k2ap− 5ka + 2dka + kb)pm+ n

fm,n(P ′) ≡ (4a2 − 5a+ 2da+ b)m+ n (mod p)

It is known that (4a2 − 5a+ 2da+ b)m+ n ≡ 0 (mod p)

∴ fm,n(P ′) ≡ 0 (mod p)

Therefore P ′ is a divisible point and the conjecture is proven.

4.5 Reflection symmetry

Figure 8: The same plot from Figure 7, with lines of reflection drawn. The lines are parallel to v̂, separated
by distances of p. This observation leads to the reflection conjecture.

Reflection conjecture Lines of reflection can be described in vector form by Aû+ tv̂ , t ∈ Z, or a = A.
P = (A+ ∆a)û+ bv̂ and P ′ = A−∆a)û+ bv̂ are two points in the same quadrant. ∆a is the distance from
P and P ′ to a = A. If P is a divisible point, then P ′ is as well.

(A+ ∆a)û+ bv̂ 
 (A−∆a)û+ bv̂

Proof Every divisible point P is part of a parabola aû + gk0,k1,k2(a)v̂. Every parabola has an axis of
reflection symmetry; P can be reflected across this axis to the location P ′. Since P ′ is part of the parabola,
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it must be divisible. Thus, the axis of reflection of the parabola is the line of reflection described by the
conjecture.

The axis of reflection of any parabola passes through its vertex, where the rate of change of gk0,k1,k2
is

zero:

∴ g′k0,k1,k2
(A) = 2(−4 + k2p)A+ (5− 2d+ k1p) = 0

−8A+ 2k2pA+ 5− 2d+ k1p = 0

8A ≡ 5− 2d (mod p)

A ≡ 8−1(5− 2d) (mod p)

A = 8−1p (5− 2d) + kp , k ∈ Z

Infinitely many lines of reflection exist separated by distances of p, as suggested by the observations.
Reflection is generally unused in this essay due to the relative difficulty of implementing it into the model.

However, the importance of these findings is that the lines of reflection always pass through the vertices of
the parabola aû+ gk0,k1,k2

(a)v̂, at the points Aû+Bv̂, where B represents gk0,k1,k2
(A).

B = gk0,k1,k2
(8−1p (5− 2d) + kp)

B = (−4 + k2p)(8
−1
p (5− 2d) + kp)2 + (5− 2d+ k1p)(8

−1
p (5− 2d) + kp) + (−m−1p n+ k0p)

B ≡ (−4)(8−1p (5− 2d))2 + (5− 2d)(8−1p (5− 2d)) + (−m−1p n) (mod p)

B ≡ (−4)(8−1p )2(5− 2d)2 + 8−1p (5− 2d)2 + (−m−1p n) (mod p)

B ≡ 8−1p (1− 8−1p 4)(5− 2d)2 −m−1p n (mod p)

This information is used to describe rotation symmetry. The location of the vertex depends on the
quadrant, since d is present in the expressions for A and B. Hence, let AD ≡ 8−1p (5− 2D) + kDp , kD ∈ Z,

and BD ≡ 8−1p

(
1−p
2

)
(5−2D)2−m−1p n mod p. ADû+BDv̂ represents the locations of the vertex in quadrant

D.

4.6 Rotation symmetry

The patterns of divisible points in the quadrants are mutually similar. In the previous proofs, the assumption
let d be constant is successfully applied, suggesting that pattern-generating mechanisms operate similarly
everywhere. A rotation from quadrant D1 to D2 can be described as taking the point d = D1 : aû+ bv̂ and
transforming it to d = D2 : aû+ bv̂. The change in d serves to redefine the directions of û and v̂. Doing so
for every point in a quadrant, the points are rotated together, bringing the pattern of divisible points with
them. However, changing d has an additional effect on divisible points:

Original: d = D1 : aû+ gk0,k1,k2
(a)v̂ = aû+ ((−4 + k2p)a

2 + (5− 2D1 + k1p)a+ (−m−1p n+ k0p))v̂

Rotated: d = D2 : aû+ gk0,k1,k2(a)v̂ = aû+ ((−4 + k2p)a
2 + (5− 2D1 + k1p)a+ (−m−1p n+ k0p))v̂

Actual: d = D2 : aû+ gk0,k1,k2
(a)v̂ = aû+ ((−4 + k2p)a

2 + (5− 2D2 + k1p)a+ (−m−1p n+ k0p))v̂

The coefficient (5−2d+k1p) of the term with degree 1 changes. On the graph of any quadratic relationship,
this results in a translation of the parabola. This signifies that the similarity between two quadrants relies
not only on a rotation, but a translation applied afterwards. The location of a parabola can be determined
by its vertex, Aû+Bv̂. A translation of the vertex is also a translation of all divisible points on the parabola.

Original: d = D1 : AD1 û+BD1 v̂

Rotated: d = D2 : AD1 û+BD1 v̂

Actual: d = D2 : AD2 û+BD2 v̂

The discrepancy between the two is the translation ∆AD1→D2 û+ ∆BD1→D2 v̂ that is needed to move the
rotated vertex to its expected location.

∆AD1→D2
≡ AD2

−AD1
(mod p)

∆BD1→D2
≡ BD2

−BD1
(mod p)
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A) Actual B) Rotation only (Incorrect)

Figure 9: In B, divisible points from quadrant 1 are rotated about the origin—no translation added, resulting
in subtle differences between quadrants 2, 3, and 4 of the two plots.

The translation only needs to be calculated once, then rotation symmetry can be expressed for any point:

d = D1 : aû+ bv̂ 
 d = D2 : (a+ ∆AD1→D2)û+ (b+ ∆BD1→D2)v̂

4.7 Testing symmetries

To confirm that the symmetries and their consequences are accurately understood, divisibility plots are
constructed following two distinct methods. The first method uses the recursive definition of f and tests
each point’s divisibility. The second method finds some divisible points, and transforms those points to fill
the plane. In Figure 10, the plots are identical by visual comparison, validating the symmetries.

5 Lines

Every line L on the Ulam spiral can be expressed in vector form, starting at some initial point a0û + b0v̂,
and extending along a direction vector ~ω = ωaû + ωbv̂ , ωa, ωb ∈ Z. Lines are assumed to be confined to a
single quadrant.

Vector form of L :d = D : (a0û+ b0v̂) + t(ωaû+ ωbv̂), t ∈ Z

Parametric form of L :d = D :

{
a = a0 + tωa

b = b0 + tωb

= (a0 + tωa)û+ (b0 + tωb)v̂, t ∈ Z

A “divisible line” modulo p contains at least one divisible point; an “indivisible line” contains none.
Indivisible lines are desirable in the model, as they are more likely to contain prime points. Which lines are
indivisible modulo p? The question appears difficult to answer, since there are infinitely many possible lines.

When a transformation from the previous section is applied to the line L, it is applied to every point
in L. When a divisible point is transformed, its new location is also divisible; when an indivisible point is
transformed, its new location is indivisible. The transformed line L′ is composed only of these transformed
points. Thus, L′ must have the same divisibility as L. In this way, L and L′ are redundant, and knowing
the divisibility of L automatically grants knowledge about the divisibility of L′.

L� L′
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Figure 10: Above, 7 | f5,4(P ). Below, 17 | f2,3(P ). The plots on the right are generated by the half-tiles
highlighted on the plot.

In the following sections, symmetry is used to show how every line is redundant to a simpler line express-
ible in the form d = D : (sb+ c)û+ bv̂ , s, c ∈ Z , 0 ≤ s, c < p. One may find the divisibility of each line in
the simplified form, then use symmetry to determine the divisibility of every possible line.

5.1 Translational symmetry

Recall the tiling conjecture: P 
 P + kapû+ kbpv̂ , ka, kb ∈ Z.

L : d = D :

{
a = a0 + tωa

b = b0 + tωb


 L′ : d = D :

{
a = a0 + tωa + kap = (a0 + kap) + tωa

b = b0 + tωb + kbp = (b0 + kbp) + tωb

L : d = D :

{
a = a0 + tωa

b = b0 + tωb


 L′ : d = D :

{
a = a0 + tωa + tkap = a0 + t(ωa + kap)

b = b0 + tωb + tkbp = b0 + t(ωb + kbp)

11



Figure 11: In each divisibility plot modulo 7, the red line is redundant to the orange line by translational
symmetry.

As shown, adding multiples of p to any of a0, b0, ωa, ωb results in a line redundant to the original.

Translational symmetry principle of lines A If a0 ≡ a′0 , b0 ≡ b′0 , ωa ≡ ω′a , ωb ≡ ω′b (mod p), then

L : d = D :

{
a = a0 + tωa

b = b0 + tωb


 L′ : d = D :

{
a = a′0 + tω′a
b = b′0 + tω′b

Thus, every line is redundant to some line where 0 ≤ a0, b0, ωa, ωb < p.

Lines where ωb ≡ 0 (mod p) make up a small portion of all lines on the plot. Ideally, these lines may be
studied further, but in this essay they are assumed unnoteworthy and ignored for brevity.

Lines where ωb 6≡ 0 (mod p) can be simplified by the substitution t = t′ω−1bp
.

L : d = D :

{
a = a0 + tωa = a0 + t′b−1p ωa = a0 + t′(ω−1bp

ωa)

b = b0 + tωb = b0 + t′b−1p ωb = b0 + t′(ω−1bp
ωb)

Consider L′ : d = D :

{
a = a0 + tω−1b p

ωa

b = b0 + t
. This line is redundant to L if:

a0 ≡ a0 , b0 ≡ b0 , ω−1bp
ωa ≡ ω−1bp

ωa , ω
−1
bp
ωb ≡ 1 (mod p)

All of these statements are true, thus every line where ωb 6≡ 0 (mod p) can be converted to a line where
ωb = 1.

When ωb = 1 (mod p), the substitution b = b0 + t→ t = b− b0 can be used:

L : d = D :

{
a = a0 + tωa → a = a0 + (b− b0)ωa = (a0 − b0ωa) + bωa

b = b0 + t→ b = b0 + (b− b0) = b

Let s be the slope of the line with respect to v̂: s = ωa

ωb
= ωa

(1) = ωa. c is the a-intercept of the line (when

b = 0): c = ωa(0) + a0 = a0. The line can be written in the form L : d = D : a = sb+ c.

Translational symmetry principle of lines B The translational symmetry principle of lines can be
adapted to lines of this form. If s ≡ s′ , c ≡ c′ (mod p), then

L : d = D : a = sb+ c
 L′ : d = D : a = s′b+ c′

Thus, every line is redundant to some line where 0 ≤ c, s < p.

12



5.2 Rotational symmetry

In rotational symmetry,
∆AD1→D2

= AD2
−AD1

∆BD1→D2
= BD2

−BD1

d = D1 : aû+ bv̂ 
 d = D2 : (b+ ∆AD1→D2)û+ (b+ ∆BD1→D2)v̂

This can be applied to lines.

L : d = D1 : a = sb+ c
 L′ : d = D2 : (a−∆AD1→D2
) = s(b−∆BD1→D2

) + c

L′ : d = D2 : a = sb+ (c− s∆BD1→D2
+ ∆AD1→D2

)

Letting D2 = 1, every line is redundant to some line in quadrant 1. In conclusion, every line may be
converted to the form d = 1 : a = sb+ c , 0 ≤ c, s < p. In total, there are p2 unique lines.

5.3 Divisible lines modulo 2

First, this special case is considered, to demonstrate the process of finding an indivisible line.
L : d = D : a = sb+ c is divisible if there exists some point on L that is divisible—there is some value of

b for which the point d = D : (sb+ c)û+ bv̂ on the line is divisible. Whether b exists may be determined by
attempting to construct it. Begin by assuming that d = D : (sb+ c)û+ b0v̂ is a divisible point.

d = D : 2 | fm,n((sb+ c)û+ bv̂)

(4(sb+ c)2 − 5(sb+ c) + 2D(sb+ c) + b)m+ n ≡ 0 (mod 2)

bm(s+ 1) + cm+ n ≡ 0 (mod 2)

If m is even, then n ≡ 0 (mod 2)⇒ 2 | n. This is always false (has no solution) if n is odd. When m is
odd:

b(s+ 1) ≡ c+ n mod 2

b ≡


(s+ 1)−12 (c+ n) if 2 - s+ 1⇒ 2 | s
any value if 2 | s+ 1, 2 | c+ n

no solution if 2 | s+ 1, 2 - c+ n⇒ 2 - s, 2 - c+ n

(mod 2)

Therefore, L is indivisible if m is even but n is odd, or if s and c+ n are odd.

5.4 Divisibility of a line

Just as in the previous section, to determine if L : d = 1 : a = sb + c is divisible, begin by assuming that
d = 1 : (sb+ c)û+ bv̂ is a divisible point.

d = 1 : fm,n((sb+ c)û+ bv̂) ≡ 0 (mod p) (1)

(4(sb+ c)2 − 5(sb+ c) + 2(1)(sb+ c) + b)m+ n ≡ 0 (mod p) (2)

4s2b2 + (8sc− 3s+ 1)b+ 4c2 − 3c+m−1p n ≡ 0 (mod p) (3)

Let 4s2 = α, 8sc− 3s+ 1 = β, and 4c2 − 3c+m−1p n = γ. α, β, γ ∈ Z.

αb2 + βb+ γb ≡ 0 (mod p)

4α2b2 + 4αβb+ 4αγ ≡ 0 (mod p)

(2αb+ β)2 − β2 + 4αγ ≡ 0 (mod p)

(2αb+ β)2 ≡ β2 − 4αγ (mod p)
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If β2 − 4αγ is a quadratic nonresidue modulo p, then there is no value of r that can satisfy r2 ≡
β2 − 4αγ (mod p). Thus, there is no solution for 2αb + β, and no value of b for which the assumption
“d = 1 : (sb+ c)û+ bv̂ is a divisible point” is true. In this case, L is indivisible.

To manipulate β2 − 4αγ so that it is a quadratic nonresidue, quadratic nonresidues modulo p must first
be found. This is done quickly through brute force. Numbers from 0 to p − 1 are listed. Every number
that is congruent to a perfect square modulo p is a quadratic residue, and is removed. The p−1

2 values that
remain in the list are quadratic nonresidues modulo p. Next, for each value q from the list, one considers
the congruence:

q ≡ β2 − 4αγ (mod p)

q ≡ (8sc− 3s+ 1)2 − 4(4s2)(4c2 − 3c+m−1p n) (mod p)

q ≡ (64s2c2 − 48s2c+ 16sc+ 9s2 − 6s+ 1)− (64s2c2 − 48s2c+ 16s2m−1p n) (mod p)

q ≡ 9s2 − 16s2m−1p n+ 16sc− 6s+ 1 (mod p)

−16sc ≡ 9s2 − 16s2m−1p n− 6s+ 1− q (mod p)

c ≡ −16−1p 9s+ sm−1p n+ 8−1p 3 + (q − 1)16−1p s−1p (mod p)

This suggests that there are many ways to manipulate a line so that it is indivisible. For every value of
s except s ≡ 0 (mod p), there is a possible solution for c. In translational symmetry, it is shown that only
0 ≤ s < p needs to be studied to know the divisibility of every line. Thus, s may be varied from 1 to p− 1,
evaluating c in each case. This is a finite process, involving p−1

2 possible values for q, and p − 1 possible

values for p, a total of (p−1)2
2 times the congruence needs to be evaluated to determine every indivisible line

in the divisibility plot modulo p.

c ≡ −16−17 9s+ s(2)−17 (1) + 8−17 3 + ((3)− 1)16−17 s−17 (mod 7)

c ≡ −(4)9s+ s(4)(1) + (1)3 + (2)(4)s−17 ≡ 3s+ 3 + s−17 (mod 7)

Colour s c
red 1 0

orange 2 6
yellow 3 3
green 4 3
blue 5 0

violet 6 6

Figure 12: When searching for indivisible lines on the divisibility plot of f2,1 modulo 7, it is found that 3 is
a quadratic nonresidue modulo 7. Each resulting indivisible line d = 1 : a = sb+ c is shown.

6 Finding prime-rich lines

After the procedure in section 5, the model possesses a vast collection of statements: L : d = 1 : a = sb+ c
is indivisible modulo p. This can be expressed by the notation L : d = 1 : a = sb+ c (p).

Statements can be combined. Choose k statements, each about a different divisibility plot:

L1 : d = 1 : a = s1b+ c1 (p1)

L2 : d = 1 : a = s2b+ c2 (p2)

· · ·

Lk : d = 1 : a = skb+ ck (pk)
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The goal of processing this information is to find a line L′ that is redundant to every line presented in the
statements. L′ would be indivisible modulo every prime from p1 to pk. As explained in section 2, L′ would
be prime-rich. Successfully predicting its existence answers the research question affirmatively. Specifically,

Q =
p1

p1 − 1
× p2
p2 − 1

× . . .× pk
pk − 1

=

k∏
i=1

pi
pi − 1

1. As with every line, the target line L′ is expressible in the form L′ : d = D : (a′0 + tω′a)û+ (b′0 + tω′b)v̂.

2. Suppose one wishes to find L′ in quadrant D. Every statement Lk : d = 1 : a = skb + ck (pk) is
converted into Lk : d = D : a = skb+ (ck − sk∆B1→D + ∆A1→D) (pk), following rotational symmetry.

3. The line Lk : d = D : a = skb+ ck can be converted into a vector form, by reversing the substitutions
described in section 5.1. In this way, every statement returns to one in the form

Lk : d = D : (a0k + tωak
)û+ (b0k + tωbk)v̂ (pk)

4. From the translational symmetry principle of lines, it is known that L′ is redundant to Lk if

a0k ≡ a′0 , b0k ≡ b′0 , ωak
≡ ω′a , ωbk ≡ ω′b (mod pk)

Therefore,

a01 ≡ a′0 (mod p1)

a02 ≡ a′0 (mod p2)

· · ·
a0k ≡ a′0 (mod pk)

And similarly for b0, ωa, ωb.

5. For each of a′0, b
′
0, ω
′
a, ω
′
b, the system of congruences may be solved by implementing the Chinese

remainder theorem. In fact, a solution must exist, therefore the statements may always be combined
to find L′.

Thus, in the model, arbitrarily many statements can be combined to predict the location of a line that
is indivisible by an arbitrary number of primes. Considering the number of statements available for each p,
the number of solutions to L′ is so vast that it would be impractical to use a model that finds them all.

6.1 Algorithm

The model generates a random solution for L′ in the plot of fm,n which does not contain multiples of the
first k primes.

1. Generate a list of the first k primes. For each prime pi:

2. If pi | m, then if pi | n, the plot will contain no prime-rich lines, and the algorithm may abort. If pi - n,
the algorithm may continue, and this value of pi may be skipped, since the plot of fm,n contains no
divisible points modulo pi.

3. For D = 2, 3, 4, ∆A1→D and ∆B1→D are calculated.

4. The guess-and-check method determines all quadratic nonresidues q modulo pi.

5. For each possible q, for each value s from 1 to p−1, c ≡ −16−1pi
9s+sm−1pi

n+8−1pi
3+(q−1)16−1pi

s−1pi
(mod pi)

is evaluated and stored in a list of statements about pi.

6. One statement is selected randomly from the list of statements about pi.
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7. D is selected at random, and all statements are converted accordingly.

8. For each statement, b0 is chosen between 0 and pi−1, and ωb is chosen between 1 and pi−1. d = D : a =

sb+c is rewritten as d = D :

{
a = st′ + c

b = t′
, where t′ = b0+tωb. Then a = s(b0+ωbt)+c = sb0+sωbt+c,

thus a0 = sb0 + c and ωa = sωb.

9. The Chinese remainder theorem is used to solve for a′0, b
′
0, ω
′
a, ω
′
b.

6.2 Results

k = 3 k = 4 k = 5
Q = 3.75 Q = 4.375 Q = 4.8125

d = 3 : (0 + 23t)û+ (−14 +−7t)v̂ d = 1 : (183 + 11t)û+ (49 + 101t)v̂ d = 3 : (487 + 851t)û+ (1109 +−293t)v̂
d = 3 : (28 + 23t)û+ (14 +−7t)v̂ d = 4 : (119 + 71t)û+ (−3 + 89t)v̂ d = 3 : (2172 + 61t)û+ (−540 +−61t)v̂
d = 2 : (19 + 29t)û+ (1 +−7t)v̂ d = 1 : (115 + 131t)û+ (87 +−11t)v̂ d = 3 : (1549 + 13t)û+ (155 +−377t)v̂
d = 2 : (5 + 17t)û+ (11 + 17t)v̂ d = 1 : (37 + 167t)û+ (−33 +−59t)v̂ d = 3 : (579 +−989t)û+ (609 +−1873t)v̂
d = 4 : (1 + 19t)û+ (3 +−1t)v̂ d = 3 : (36 + 107t)û+ (−102 +−101t)v̂ d = 2 : (345 + 353t)û+ (627 + 821t)v̂

Figure 13: These theoretically prime-rich lines in the plots of f1,1 were produced near instantaneously by
the computer.

k = 6 k = 7
Q = 5.2135416̄ Q = 5.53938802083̄

d = 4 : (4190 +−13781t)û+ (11282 +−29647t)v̂ d = 1 : (87308 +−64321t)û+ (−70090 +−275453t)v̂
d = 4 : (26505 + 9241t)û+ (−13949 +−11191t)v̂ d = 4 : (371753 +−455761t)û+ (203541 +−510481t)v̂
d = 4 : (14181 +−14813t)û+ (1285 +−26977t)v̂ d = 2 : (418792 + 212521t)û+ (175024 +−56471t)v̂

d = 1 : (2055 + 193t)û+ (−3359 + 4423t)v̂ d = 3 : (200891 +−262517t)û+ (229281 +−307253t)v̂
d = 4 : (27360 + 22531t)û+ (−13520 +−12541t)v̂ d = 4 : (133831 +−321137t)û+ (−104149 +−400481t)v̂

a′0, b
′
0, ω
′
a, ω
′
b grow rapidly in magnitude with k, while Q grows slowly. For k > 8, the values of f for

points along the lines produced are in the quadrillions. This is the greatest disadvantage of this model.

fm,n(aû+ bv̂) = (4a2 − 5a+ 2da+ b)m+ n ≡ 0 mod p

fm,n(aû+ bv̂) ≈ 4ma2

fm,n((a′0 + tω′a)û+ (b′0 + tω′b)v̂) ≈ 4m(a′0 + tω′a)2

P (X ∈ P|X ≈ fm,n((a′0 + tω′a)û+ (b′0 + tω′b)v̂)) ≈ P (X ∈ P|X ≈ 4m(a′0 + tω′a)2)

This is approximately 1
ln(4m(a0+tω′

a)
2)−1.08366 . When a′0 or ωa are large, the probability that X is prime

is small despite a large Q, and the model still fails to produce an abundance of prime numbers.
This is avoided somewhat by altering steps 2a and 2c. In 2a, one chooses statements where s = 1. In 2c,

one chooses ωb = 1. Thus, ω′a ≡ 1 (mod pi), to which ω′a = 1 is always a solution.

6.3 Evaluation

250 lines are produced by the simplied model. On each line, the number of prime points first 250 points with
the least a value is recorded. This is repeated without the model, checking 250 lines generated randomly.

R is the actual ratio of primes found by the model divided by primes found without the model. R varies
somewhat from its expected values, however its general trend matches Q.

7 Conclusion

Mathematically, it was discussed how a model may locate every possible line indivisible by arbitrarily many
primes, on any spiral. The lines that have been checked yield primes at about the same rate as the model
predicts. The model can achieve a fivefold increase in the probability of generating a prime number. This

16



Figure 14: The above graph uses information gathered from f1,1. All lines considered were in the form
(a0û+ b0v̂) + t(û+ v̂).

is not particularly large. However, it is sufficient to show that the Ulam spiral’s “mystery” has yet another
valid explanation. The significance of a structure perceived in imperfect randomness is usually the existence
of more underlying structures.
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A Indivisible lines modulo primes up to 17

For any of the listed primes p, any quadratic nonresidue r may be chosen from the respective table to give
a value of c for which d = 1 : a = sb + c is an indivisible line modulo p on the divisibility plot of f1,1.
Symmetries can then be used to find all other indivisible lines.

p = 3

s
c 1 2

r 2 2 1

p = 5

s
c 1 2 3 4

r
2 4 3 4 3
3 0 1 1 2

p = 7

s
c 1 2 3 4 5 6

r
3 4 0 1 5 6 2
5 5 4 6 0 2 1
6 2 6 5 1 0 4

p = 11

s
c 1 2 3 4 5 6 7 8 9 10

r

2 5 3 4 3 10 10 6 5 6 4
6 8 10 5 1 4 5 8 4 10 1
7 6 9 8 6 8 1 3 1 0 3
8 4 8 0 0 1 8 9 9 1 5
10 0 6 6 10 9 0 10 3 3 9

p = 13

s
c 1 2 3 4 5 6 7 8 9 10 11 12

r

2 9 9 12 6 12 11 6 5 11 5 8 8
5 10 3 8 3 7 9 8 10 1 9 1 7
6 6 1 11 2 1 4 0 3 2 6 3 11
7 2 12 1 1 8 12 5 9 3 3 5 2
8 11 10 4 0 2 7 10 2 4 0 7 6
11 12 4 0 10 10 5 12 7 7 4 0 5
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p = 17

s
c 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

r

3 2 13 12 8 13 14 3 10 12 2 8 9 14 10 9 3
5 0 12 0 16 16 8 10 14 8 12 14 6 6 5 10 5
6 16 3 11 3 9 5 5 16 6 0 0 13 2 11 2 6
7 15 11 5 7 2 2 0 1 4 5 3 3 15 0 11 7
10 12 1 4 2 15 10 2 7 15 3 12 7 3 1 4 10
11 11 9 15 6 8 7 14 9 13 8 15 14 16 7 13 11
12 10 0 9 10 1 4 9 11 11 13 1 4 12 13 5 12
14 8 16 14 1 4 15 16 15 7 6 7 1 4 8 6 14

B Model test data

k 2 3 4 5 6 7 8
Q 3 3.75 4.37. . . 4.81. . . 5.21. . . 5.53. . . 5.84. . .

Primes found with model 20211 20356 23416 19384 16036 13486 11442
Primes found without model 5955 5913 5749 4093 3153 2253 1954

R 3.39. . . 3.44. . . 4.07. . . 4.73. . . 5.08. . . 5.98. . . 5.85. . .
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